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Abstract. We have investigated the spectral density of shot noise for the system of a quantum dot (QD)
coupled to two single-wall carbon nanotube terminals irradiated with a microwave field on the QD. The
terminal features are involved in the shot noise through modifying the self-energy of QD. The contributions
of carbon nanotube terminals to the shot noise exhibit obvious behaviors. The novel side peaks are associ-
ated with the photon absorption and emission procedure accompanying the suppression of shot noise. The
shot noise in balanced absorption belongs to sub-Poissonian, and it is symmetric with respect to the gate
voltage. The differential shot noise displays intimate relation with the nature of carbon nanotubes and the
applied microwave field. It exhibits asymmetric behavior for the unbalanced absorption case versus gate
voltage. The Fano factor of the system exhibits the deviation of shot noise from the Schottky formula, and
the structures of terminals obviously contribute to it. The super-Poissonian and sub-Poissonian shot noise
can be achieved in the unbalanced absorption in different regime of source-drain bias.

PACS. 85.35.-p Nanoelectronic devices – 73.23.-b Electronic transport in mesoscopic systems – 73.63.Fg
Nanotubes – 73.21.La Quantum dots

1 Introduction

Shot noise is the phenomenon related to nonequilibrium
correlation behaviors for the discrete charged particles
moving in definite direction to form measurable current
〈I〉. The thermal noise, on the other hand, is the equi-
librium effect of fluctuations in the occupation number of
electron, which can be obtained from the measurement
of conductance. However, the information of shot noise
can not be derived from the measurement of conductance.
Instead, we have to investigate nonequilibrium state of
a system [1,2]. Quantum effects in a mesoscopic system
make important contributions to shot noise. Classically,
the well-known Schottky’s formula SP = 2e〈I〉 is the shot
noise corresponding to uncorrelated transporting particles
with the Poissonian distribution [3], which is referred to
as the Poisson value of shot noise. The quantum behaviors
of shot noise mainly arise from the coherent mesoscopic
transport, the suppression of shot noise due to Pauli ex-
clusion principle, and the Fermi distribution of electrons.
In general, the current operator can be described by the
creation and annihilation operators of electrons, and the
interchange of operators induces novel terms, which con-
tribute to the noise in quantum mechanics point of view.
The shot noise is composed of four correlated nonequilib-
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rium particle operators, which induce novel behaviors in
the current correlation [4,5]. The shot noise can be ob-
tained as the temperature approaches zero, which is the
excess noise. Obtaining shot noise of deviation from Schot-
tky’s form is found to be interesting. The Pauli suppres-
sion of shot noise has been demonstrated experimentally
by several groups [6–9]. The shot noise suppression in one-
dimensional hopping model [10], the suppression by Fermi
and Coulomb interaction [11] have been discussed. The
enhanced shot noise was derived theoretically by consid-
ering the diode biased resonant tunneling system in the
negative differential resistance regions [12]. The enhance-
ment of shot noise was observed in the case of resonant
tunneling via localized states [13].

The single-wall carbon nanotubes (CNs) are
investigated intensively due to their interesting properties
in electronics [14,15]. The specific behaviors on electron
transport in these materials arise further systematically
studies on the potential application in manipulation of
quantum devices, such as the diode [16], heterojunc-
tion [17], and field effect transistor [18]. The CN systems
coupling to different materials contain unexpected feature
which could be used in the future logic circuit construc-
tions [19]. The basic problems on mesoscopic transport
through the CN based devices present profound investi-
gation phenomena, and consequently We have very active
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research frontier both in theoretical and experimental
aspects [20–26]. A nano-device is often applied with a
microwave field (MWF) through its gate or source-drain
terminals. The time-dependent field induces nonlinear
photon-assisted tunneling, and the time-reversal symme-
try is broken [27–29]. The information of external field
is transferred to the tunneling current and differential
conductance. Recently, we have made series investigations
on mesoscopic transport through the systems composed
of carbon nanotubes under the perturbation of external
MWFs, such as the system with a quantum dot coupled
to two carbon nanotubes, and the system with a toroidal
carbon nanotube coupled to two normal metal termi-
nals. Novel characteristics are revealed to be associated
with the photon-assisted tunneling [30], the periodical
oscillation in the magnetic flux [31], and the spin-current
resonant structures [32].

In this paper, we investigate the photon-assisted shot
noise spectral density in the mesoscopic system with a
quantum-dot (QD) coupled to single-wall carbon nan-
otube leads (CN-QD-CN). The central QD is applied with
a time-dependent field through its gate. The CN termi-
nals act as quantum wires which open multi-channels for
electron to transport through. Since a CN lead has its
own feature associated with the concrete CN structure,
the density of state (DOS) plays an important role in
the mesoscopic transport. The photon-assisted shot noise
has been investigated by Pedersen and Büttiker [33] us-
ing the scattering theory for a contact system, and by
Sun et al. [34] through employing the equation of mo-
tion method to study the single-level QD system. Since
our system is different from theirs, the corresponding for-
mulas are also derived to contain novel physical properties
associated with concrete mesoscopic structure. We employ
the equation of motion method to find electron operators,
and then obtain the current operator from the continu-
ity equation. The nonequilibrium Green’s functions are
involved in the current operator, and the shot noise spec-
tral density is derived through Fourier transformation of
current correlations. We arrange the formula derivation
in Section 2, and the numerical calculations in Section 3.
Brief discussion is presented in the last section.

2 Model and formalism

We consider the circumstance that a QD is coupled to
two single-wall carbon nanotubes (CN-QD-CN). An ex-
ternal MWF irradiates to the QD through its gate, which
is equivalent to the case that a time-dependent electric
field is applied to the central QD through its gate. This
induces an electric dipole potential to modify the energy
spectrum of central QD as E�σ(t) = Ẽ�σ+eVd cosωt−eVg,
where Ẽ�σ is the isolated energy of QD in the absence of
external field, and Vg is the gate voltage. We consider the
relatively large QD which can be expressed by a noninter-
acting electron system approximately. The CN leads are
described by the tight-binding Hamiltonian. The termi-
nals are taken in equilibrium states which can be expressed

by the grand canonical ensembles. The electronic proper-
ties can be determined by the total Hamiltonian which is
the summation of sub-Hamiltonians and tunneling inter-
action terms

H =
∑

δγkσ

εδγ,kσc†δγ,kσcδγ,kσ

+
∑

�σ

E�σ(t)d†�σd�σ +
∑

δγk�σ

[Rγc†δγ,kσd�σ + H.c.], (1)

where c†δγ,kσ(cδγ,kσ), and d†�σ(d�σ) are the creation (an-
nihilation) operators of electron in two leads and cen-
tral QD, respectively, with γ ∈ {L, R}. Rγ is the inter-
action strength of electrons between the γth lead and the
central QD. We take the chemical potential of the right
lead as the reference of energy measurement. The spin σ
has the values as +1 and −1 corresponding to the nota-
tions ↑ and ↓, respectively, in the subscripts of equations.
The energy of a CN lead εδγ,kσ is intimately associated
with the structure of concrete CN. We present the energy
of armchair CN in the tight-binding approximation here
as an example [15]

εδγ,kσ = δγ0

{
1 + 4 cos

(
aky

2

)
cos

(√
3akx

2

)

+ 4 cos2
(

aky

2

) } 1
2

, (2)

where
√

3akx/2 = πq/n, q = 1, 2, . . . , 2n, δ = ±, and
γ0 = 3.033 eV. The energy in the transversal direction
is quantized, while in the longitudinal direction it is not
restricted. To proceed conveniently, we make the gauge
transformation over the system by letting Ψ(t) = Û(t)Ψ̃(t)
in the Schrödinger equation, where the unitary opera-
tor Û(t) is defined by Û(t) = exp(−iλ

∑
�σ d†�σd�σ sin ωt),

with λ = eVd/�ω. The Hamiltonian of the system under-
goes the gauge transformation H̃ = Û−1(t)HÛ(t). The
transformed Hamiltonian is obtained by letting E�σ →
Ẽ�σ − eVg, and the interaction strengths Rγ → R̃γ(t) =
Rγ exp(−iλ sinωt) in equation (1).

The shot noise spectral density Sγγ′(Ω) is determined
by the Fourier transformation of the current correlation

Πγγ′(t, t′) = 〈δÎγ(t)δÎγ′(t′)〉 + 〈δÎγ′(t′)δÎγ(t)〉 (3)

in the pseudo-equilibrium state as the expression [1]

Sγγ′(Ω)δ(Ω + Ω′) =
1
2π

Πγγ′(Ω, Ω′), (4)

where δÎγ(t) = Îγ(t) − 〈Îγ(t)〉. The symbol 〈...〉 in above
formula denotes the quantum expectation over the elec-
tron state, and the ensemble average over the system. In
order to find the shot noise of the system, we have to
determine the current correlations between the currents
tunneling in the same terminals as well as in different ter-
minals at time t and t′.
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The current operator Îγ(t) for our system is strongly
related to the features of terminals. We derive the current
operator by considering the continuity equation of elec-
trons, and by employing the Heisenberg equation to give

Îγ(t) = − ie

�

∑

δk�σ

[R̃∗
γ(t)d†�σ(t)cδγ,kσ(t)

− R̃γ(t)c†δγ,kσ(t)d�σ(t)]. (5)

Due to the coupling and the applied MWF, electrons in
the terminals are affected to form nonequilibrium states,
and the net current is determined by the transporting elec-
trons from deferent terminals. To determine the current
operator, we employ the equation of motion for the elec-
tron operators in the leads and QD. The annihilation op-
erator of an electron in the γth terminal is found to be

cδγ,kσ(t) =
∑

�

∫
dt1g

r
δγ,kσ(t, t1)R̃γ(t1)d�σ(t1) + ĉδγ,kσ(t),

(6)

where ĉδγ,kσ(t) is the annihilation operator of electron
in the isolated terminal. gr

δγ,kσ(t, t1) is the Green’s func-
tion of electron in the isolated γth terminal. This in-
dicates that as there are no interactions between the
QD and the terminals, electrons in the terminals sat-
isfy the Fermi distribution function f(εδγ,kσ) by the form
〈ĉ†δγ,kσ(t)ĉδ′γ′,k′σ′(t)〉 = δγγ′δδδ′δσσ′δkk′f(εδγ,kσ). The op-
erator of electron in the coupled system is involved with
the electron operator of the QD, which should also be de-
termined by the equation of motion. Consequently, the
annihilation operator of electron in the coupled QD is
given by

d�σ(t) =
∫

dt1g
r
�σ(t, t1)

∑

δγk

R̃∗
γ(t1)cδγ,kσ(t1) + d̂�σ(t),(7)

where d̂�σ(t) is the annihilation operator of electron in
the isolated QD, and it has no contribution to the tun-
neling current. In the following derivations, we drop the
operator d̂�σ(t) for convenient. gr

�σ(t, t1) is the correspond-
ing Green’s function of the isolated QD. Combining equa-
tions (6) and (7), one can obtain the operators of elec-
trons in the terminal and QD by iteration procedure.
The annihilation operator of the coupled QD is therefore
determined by the coupled Green’s function of the QD
Gr

�σ(t, t1) by the expression

d�σ(t) =
∫

dt1G
r
�σ(t, t1)

∑

δγk

R̃∗
γ(t1)ĉδγ,kσ(t1). (8)

Substituting the electron operators stated in equa-
tions (6)–(8) into the current operator equation (5), we
obtain the current operator as

Îγ(t) =
e

h

∑

mn�σ

∑

ββ′

∫ ∫
dε1dε2Jm(λ)Jn(λ)Γββ′(ε1)

× exp
(

i

�
εnm
12 t

)
Aγ

ββ′,mn(ε1, ε2)ĉ
†
βσ(ε1)ĉβ′σ(ε2), (9)

where εnm
ij = εi − εj + (n − m)�ω, and Jn(λ) is Bessel

function of the first kind. We have defined the transmission
coefficient of the time-dependent system by

Aγ
ββ′,mn(ε1, ε2) = i{δβγGr

�σ(ε2+m�ω)−δβ′γGa
�σ(ε1+n�ω)

+ [Σ̃a
γσ(ε1 + n�ω) − Σ̃r

γσ(ε2 + m�ω)]

× Ga
�σ(ε1 + n�ω)Gr

�σ(ε2 + m�ω)}.
In the above formula, Γββ′(ε) is the line-width function
defined by Γββ′(ε) = 2π

∑
δk RβR∗

β′δ(ε−εδβ,kσ). The line-
width function in the same lead is given by Γγ(ε) = Γγγ(ε),
which reflects the influence of leads on the mesoscopic
transport. The line-width function Γγ(ε) of the γth lead
defined above is Γγ(ε) = 2π|Rγ |2ργ(ε). We have intro-
duced the density of state (DOS) of the γth lead ργ(ε) =∑

kδ δ(ε−εδγ,kσ), and it can be determined by the Green’s
function of the lead as ργ(ε) = −∑

kδ Imgr
δγ,kσ(ε)/π. The

Fourier transformed Green’s function of the γth lead is
given by gr

δγ,kσ(ε) = 1/[ε − εδγ,kσ + iη], (η → 0). The
self-energy of the γth lead is given by the modification of
MWF to the self-energy in the absence of the field as

Σ̃r(a)
γσ (ε) =

∑

δnk

J2
n(λ) | Rγ |2 g

r(a)
δγ,kσ(ε − n�ω).

This self-energy modified by the MWF indicates that the
field perturbed line-width function involves side-bands as

Γ̃γ(ε) = 2π|Rγ |2
∑

n

J2
n(λ)ργ(ε − n�ω).

The pseudo-equilibrium retarded (advanced) Green’s
function of the quantum dot is calculated from solving
the Dyson equation. The Fourier transformed version of
the Green’s function takes the form as

G
r(a)
�σ (ε) =

1

ε − Ẽ�σ + eVg − Σ̃
r(a)
σ (ε)

, (10)

where Σ̃
r(a)
σ (ε) =

∑
γ Σ̃

r(a)
γσ (ε) indicates the total self-

energy of the CN terminals.
The time-averaged tunneling current can be observed

directly from experiments, and it is found by taking en-
semble average and time average over the current operator
given in equation (9). The current in the γth CN lead is
expressed by

Iγ =
e

h

∑

m�βσ

∫
dεJ2

m(λ)Γββ(ε)Ar
ββ,mm(ε, ε)fβ(ε). (11)

This is in fact described by the Landauer-Büttiker-like
formula

IL =
e

h

∑

mn�σ

∫
dεT LR

mn,�σ(ε)[fL(ε − m�ω) − fR(ε − n�ω)],

(12)
where the quantity T γβ

mn,�σ(ε) represents the transmission
coefficient of electron transporting from the side-band
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channel m in one terminal to the side-band channel n in
another terminal defined by

T γβ
mn,�σ(ε) = J2

m(λ)J2
n(λ)Γγ(ε − m�ω)

×Γβ(ε − n�ω)|Gr
�σ(ε)|2.

Gr
�σ(ε) is the retarded Green’s function of the coupled QD.

The symmetry relation on the transmission coefficient
T γβ

mn,�σ(ε) = T βγ
nm,�σ(ε) holds in the system. The current

is conserved by summing up all of the currents in the
terminals, i.e.,

∑
γ Iγ = 0. The current formula equa-

tion (12) is equivalent to the one derived from the method
of Jauho, Wingreen and Meir [29]. We can see obviously
that the DOS of a lead plays an important role in the
transport. fγ(ε) is the Fermi distribution function defined
by fγ(ε) = 1/{exp[(ε − µγ)/kBT ] + 1}. The spectral den-
sity of shot noise is derived by substituting the current
operator equation (9) into the correlation function equa-
tion (3), and by making Fourier transformation over the
two times t and t′. Comparing with the definition of the
spectral density of shot noise defined in equation (4), and
considering the pseudo-equilibrium state in the presence
of the ac field, we find the spectral density of current noise

Sγγ′(Ω) =
e2

h

∑

mnn′

∑

��′

∑

ββ′σ

∫
dεJm(λ)Jn(λ)Jn′ (λ)

× Jp(λ)Γβ(ε)Γβ′(ε̃nm)Aγ
ββ′,mn(ε, ε̃nm)

× Aγ′
β′β,pn′(ε̃nm, ε)Fββ′(ε, ε̃nm). (13)

We have defined the notations in the above noise formula
ε̃nm = ε+(n−m)�ω+�Ω, p = n−m+n′, and Fββ′(ε, ε̃) =
fβ(ε)[1 − fβ′(ε̃)] + fβ′(ε̃)[1 − fβ(ε)]. The effect of photon
absorption and emission due to the MWF applied on the
QD is included in the noise spectral density. In order to
obtain the observed noise spectral density, the absorption
and emission of photon numbers are required to satisfy the
constraint as n−m+n′−m′ = 0. In fact, this constriction
is the result of energy conservation due to the electron
absorbing and emitting photons. This equation indicates
the two cases: case (A) for n = m, n′ = m′, which we refer
to the balanced absorption; case (B) for m′ = n−m + n′,
which we refer to the unbalanced absorption.

2.1 Balanced absorption

Substituting the function Aγ
ββ′,mn given in equation (9)

into the noise formula (13), we obtain the spectral density
of noise for the balanced absorption of the left terminal
S = SLL(0) by

S =
2e2

h

∑

mn

∑

��′σ

∫
dεJ2

m(λ)J2
n(λ)

{ ∑

β �=β′
Γ 2

β (ε)Γ̃β′(ε+n�ω)

×Γ̃β′(ε+m�ω) fβ(ε)[1−fβ(ε)]+ΓL(ε)ΓR(ε)Y nm
��′ (ε)FLR(ε)

}

× | Gr
�σ(ε + n�ω) |2| Gr

�′σ(ε + m�ω) |2 . (14)

We have defined the notations Y np
��′ (ε) = Γ̃L(ε +

n�ω)Γ̃R(ε + p�ω){X��′(ε + n�ω, ε + p�ω) − 1} in which
the function X��′(ε1, ε2) is expressed as

X��′(ε1, ε2) =
Γ̃ (ε1)Γ̃ (ε2)/4 + w�σ(ε1)w�′σ(ε2)

Γ̃L(ε1)Γ̃R(ε2)
,

where w�σ(ε) = ε − Ẽ�σ + eVg − ReΣ̃r
σ(ε), and Γ̃ (ε) =∑

γ Γ̃γ(ε). The formula contains thermal noise and shot
noise. We can see that the thermal noise for this case is
explicitly expressed by the first term which contains the
function fβ(ε)[1− fβ(ε)]. The thermal noise disappears as
the temperature approaches zero. At zero temperature,
the shot noise of the balanced absorption case is zero as
the source-drain bias V is removed. This indicates that
the photon-electron pumped currents from QD to the ter-
minals are equal, and the self-correlation of currents is
zero due to the symmetric pumping. The source-drain bias
disturbs the balance of symmetric pumping, and the self-
correlation of currents is nonzero in the presence of the
biased voltage V .

2.2 Unbalanced absorption

The unbalanced absorption situation is quite different
from the balanced one. The noise spectral density of the
left terminal S = SLL(0) is derived from equation (13) as

S =
2e2

h

∑

mnn′

∑

��′σ

∫
dεJm(λ)Jn(λ)Jn′(λ)Jp(λ)

×
{

1
2

∑

β �=β′
Γβ(ε)Γβ(ε̃nm)Γ̃β′(ε + n�ω)Γ̃β′(ε + p�ω)

×Fββ(ε, ε̃nm) + ΓL(ε)ΓR(ε̃nm)Y np
��′ (ε)FLR(ε, ε̃nm)

}

×|Gr
�σ(ε + n�ω) |2 |Gr

�′σ(ε + p�ω) |2,(15)

where p = n − m + n′. From the formula we can observe
that the first term of the noise spectral density contains
thermal noise and shot noise. This means that the thermal
noise term corresponding to the balanced case shown in
equation (14) is perturbed by the applied ac field, and it is
nonzero even if the temperature approaches zero. So that
this term also contains shot noise induced by the ac field.
As temperature approaches zero, the excess noise of this
term make contribution to the total shot noise. The second
term represents the shot noise induced both by the source-
drain bias and the applied ac field. This signifies that the
self-correlation of current is nonzero if the source-drain
bias or the ac field is present.

3 Numerical calculations

Although the derivations of the shot noise in the above
section are related to the more general situation for the
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multi-level QD system, in the numerical calculations we
consider the special situation of single-level QD Ẽ0σ = 0
system. Generally, the Coulomb interaction exists in the
electron system, and the interaction becomes stronger as
the sample becomes smaller. However, we can restrict our
investigation to consider the tunneling in the neighbor-
hood of a single Coulomb oscillation peak [34,35]. The
theoretical consideration on this restriction can be de-
scribed by a single channel QD model approximately. The
experimental observation for the physics around this level
can be achieved by detecting the tunneling behaviors and
noise near this energy region. From the investigation, one
can grasp the main behaviors of shot noise in the CN-
QD-CN system irradiated with MWF. According to the
weakly coupled system between the two leads and QD, the
coupling strengthes are chosen as the symmetric parame-
ters RL = RR = 24.5 or 17.5 meV. We also perform the
numerical calculations for the system composed of nor-
mal metal terminals for comparison. For such system, we
choose the DOS of metal terminals by ρL = 0.165/eV ,
which corresponds to the line-width of a metal lead as
ΓL = 1.24 meV. We consider the external microwave
field located in the frequency region 1011 Hz with the
photon energy �ω = 2.0 meV (corresponding to the fre-
quency 4.78×1011 Hz). We perform the numerical calcula-
tions to show the shot noise versus source-drain bias, gate
voltage, and frequency. The Fano factor and differential
shot noise are also calculated for the balanced and un-
balanced absorptions. Since we are interested in the shot
noise under the perturbation of MWF, we deal with the
zero-temperature circumstance, where the thermal noise
becomes zero. We take γ0 as the energy scale for the
energy quantities in the calculations. The CN leads are
chosen as the armchair (9, 9) CN, whose DOS structure
can be found in reference [15]. The differential shot noise
dS/dV is scaled by 2e3/h, and the shot noise is scaled by
S0 = 2e2γ0/h.

3.1 Balanced absorption

In this subsection, we perform the numerical calculations
of shot noise and Fano factor for the balanced absorption
by employing equation (14).

We display the differential shot noise dS/dV of CN-
QD-CN system versus the source-drain bias eV in Fig-
ure 1 as Vg = 0. Diagrams (a) and (b) are associated with
the systems in the absence and presence of MWF with
the parameter Λ = 0 and Λ = 0.8 correspondingly. As the
source-drain bias eV is positive, dS/dV shows positively
resonant structure, while it displays negatively reverse res-
onant behavior as eV is negative. This is the reflection of
asymmetric behavior as dS(eV )/dV = −dS(−eV )/dV .
For the QD coupled to two metal leads and in the absence
of MWF, there exists only one positive peak as eV > 0,
and a negatively inverse resonant peak as eV < 0. The
splitting of resonant peaks is induced by the coupled car-
bon nanotubes. This is resulted from the fact that the CNs
provide multi-channels for electrons to transport through.
The DOS of a CN lead contributes to the real part of
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Fig. 1. The differential shot noise dS/dV of CN-QD-CN sys-
tem versus source-drain bias eV for the balanced case. The pa-
rameters are chosen as eVg = 0, Rγ = 24.5 meV, �ω = 2.0 meV,
and Λ = 0 for diagram (a); Λ = 0.8 for diagram (b).

self-energy of the terminal, and this causes the splitting
of energy level in the QD. As the external MWF is applied
to the QD, novel side-bands of QD emerge for electrons
to tunnel, which result in the photon-assisted tunneling
(PAT). The PAT effect is obviously exhibited in diagram
(b) by splitting and adding new resonant peaks compared
with diagram (a).

The shot noise spectral density and Fano factor versus
gate voltage are depicted in Figure 2 as eV = 1.5165 meV,
and �ω = 2.0 meV. Diagram (a) represents the shot noise
with different coupling strengths Rγ . We find the shot
noise is intimately related to the couplings. As the cou-
pling is weaker as Rγ = 10.0 meV, single resonant peak
dominates the shot noise. While as Rγ = 17.5 meV, the
single-peak structure is competed by the splitting effect
of the system, and two side peaks emerge on the shoul-
ders compared with the situation possessing smaller Rγ .
The appearing of side peaks results from the DOS of CNs
and the competition of the coupling strengths. As the cou-
pling strengths become large enough, say Rγ = 24.5 meV,
the interaction strengths enhance the splitting effect, and
double resonant structure exhibits. Diagram (b) displays
the shot noise in the absence (Λ = 0), and in the pres-
ence (Λ = 0.8) of external microwave field. The shot noise
is affected by the MWF in both of the magnitude and
form. In the absence of MWF, the magnitude of the shot
noise is about 0.9 × 10−4 S0. The MWF suppresses it to
the value of 0.4 × 10−4 S0. Novel steps emerge on the
sides of the resonant peak of shot noise when MWF is
applied. The Fano factor is added in diagram (c) to ex-
hibit the deviation of shot noise and corresponding cur-
rent versus gate voltage. Inverse resonant behavior is ob-
served in the Fano factor, and the side-steps emerge as
the MWF is applied to the QD. In the regime approxi-
mate to |eVg| < 2 × 10−3 γ0, the MWF contributes more
suppression effect to shot noise than that of the situation
in the absence of MWF. The Fano factors for the two
cases become the same as |eVg| � 2 × 10−3 γ0, which is
the saturated value of Fano factor F = 0.125.
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Fig. 2. The shot noise and Fano factor versus gate voltage
for the balanced case. The parameters are chosen as eV =
1.5165 meV, and �ω = 2.0 meV. Diagram (a) shows the varia-
tion of shot noise associated with different coupling strengths
as Rγ = 10.0, 17.5, 24.5 meV, respectively as Λ = 0. Diagram
(b) displays the shot noise versus gate voltage when Λ = 0 and
0.8, respectively. Diagram (c) is the Fano factor versus gate
voltage when Λ = 0 and 0.8, respectively.
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Fig. 3. The differential shot noise dS/dV versus gate voltage
for the balanced case as Rγ = 17.5 meV and eV = 1.5165 meV.
The dotted curve is related to the system in the absence of
MWF, while the solid curve is associated with the system ap-
plied with MWF of frequency �ω = 2.0 meV as Λ = 0.8.

The differential shot noise dS/dV versus gate volt-
age Vg is exhibited in Figure 3 as source-drain bias eV =
1.5165 meV. The dotted curve represents the situation in
the absence of MWF. Double resonant peaks appear with
the heights about 0.98×2e3/h. The double resonant peaks
signify the splitting of single resonant transport peak of
transmission in the QD coupled system. This can be un-
derstood from the formula as dS/dV ∼ T (ε)[1 − T (ε)]
for a single-level system. As the transmission coefficient
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Fig. 4. The Fano factor versus source-drain bias eV for the
balanced case. The parameters are chosen as �ω = 2.0 meV,
eVg = 0, Rγ = 17.5 meV, and Λ = 0.8.

approaches its resonant value 1, dS/dV → 0. The per-
turbation of external MWF induces two novel side peaks,
which are associated with the PAT procedure of absorp-
tion and emission photons when electrons tunnel through
the system. The applied MWF suppresses the magnitude
of dS/dV to the value 0.48 × 2e3/h, and the suppression
causes the emergence of side-peaks as compensation.

Figure 4 displays the Fano factor in the presence of
MWF varying with the source-drain bias. The solid curve
indicates the situation of CN-QD-CN, while the dotted
curve is for the system of a QD coupled to the normal
metal leads. The Fano factor increases from zero with in-
creasing the biased voltage V . As the source-drain bias
increases to the value eV ≈ 0.45 × 10−3 γ0, an obvious
peak appears, and then the Fano factor declines to form a
valley for the M-QD-M system. The Fano factor contains
step-like behavior, which is intimately related to the struc-
ture of CNs. As the biased voltage is small, there exists
distinct difference between the Fano factors of the two sys-
tems. However, as the voltage is large, eV � 3.5×10−3 γ0,
the same saturated value F ≈ 0.142 is realized for both of
the two systems. The Fano factor for the balanced system
is smaller than 1 in the whole regime of eV , which indi-
cates that the shot noise of the balanced system belongs
to the sub-Poissonian.

We present corresponding behaviors of shot noise, tun-
neling current, and Fano factor versus the photon energy
in Figure 5. The shot noise varies non-monotonically in
the small regime of photon energy, and a valley appears
at about �ω = 0.45×10−3 γ0 shown in Diagram (a). Then
it increases to its saturated value S = 0.75 × 10−4 S0 as
the photon energy �ω � 1.5×10−3 γ0. The corresponding
current versus photon energy is depicted in diagram (b)
for comparing with the shot noise. One observes that there
exists distinct differences between the shot noise and cur-
rent. This difference is evidently given by the Fano factor
shown in diagram (c). The Fano factor varies drastically
as the photon energy is small, and also a valley is ob-
served near �ω = 0.45 × 10−3 γ0. It then increases from



H.-K. Zhao and Q. Chen: Shot noise in a quantum dot coupled to carbon nanotube 425

0

0.5

1
x 10

−4

S
/S

0

0

2

4
x 10

−4

I/I
0

0 0.5 1 1.5

x 10
−3

0

0.1

0.2

hω/2πγ
0

F

(a)

(c)

(b)
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the valley to its saturated value F ≈ 0.145. The behav-
ior of Fano factor versus photon energy is different from
the one varying with respect to source-drain bias shown
in Figure 4.

3.2 Unbalanced absorption

We perform the numerical calculations of shot noise and
Fano factor for the unbalanced absorption in this subsec-
tion by employing equation (15).

We display the shot noise and Fano factor versus gate
voltage in Figure 6. Diagram (a) is the shot noise as-
sociated with the case as eV = 0 (solid curve), and
eV = 1.5165 meV (dotted curve), correspondingly. The
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Fig. 7. The differential shot noise dS/dV versus gate bias eVg

for the unbalanced case. The parameters are chosen as Λ = 0.8
and Rγ = 17.5 meV, and eV = 1.5165 meV.

shot noise for the unbalanced situation is nonzero as the
source-drain bias is removed, even if the corresponding
current is zero for the symmetric circumstance. For our
symmetric system where the two leads and the coupling
strengths are assumed to be equal, the MWF pumps equal
electrons from the QD to the two leads. As a result, the
pumped electrons do not form net current in the absence
of source-drain bias. However, the pumped electrons may
produce shot noise, which is photon-assisted effect induced
by the MWF. This effect is quite different from the case
of balanced absorption. As the source-drain bias switches
on, the shot noise exhibits asymmetric behavior shown by
the dotted curve. This behavior indicates that the unbal-
anced absorption of photons and biased voltage together
destroy the symmetric structure compared with Figure 2
for the balanced case. This asymmetry property is trans-
ferred to the Fano factor shown in diagram (b), and the
Fano factor is larger than the one in the case of balanced
absorption.

The asymmetric behavior is even more distinctly
shown by the differential shot noise depicted in Figure 7.
Positive and negative values display in dS/dV versus
gate voltage. Compared with the balanced case shown in
Figure 2, one recognizes that the balanced and unbalanced
absorption procedures induce completely different effects.
The positive and negative behaviors are the results of the
competition for absorbing photons. From the noise for-
mula given by equation (15), the shot noise is sensitive to
the source-drain bias. However, as eV = 0, the photon en-
ergy provides the role of source-drain bias. This bias varies
with the integers of absorption and emission of photons.
Therefore, the positive and negative behaviors of dS/dV
are arisen.

Figure 8 shows the shot noise S and Fano factor F
versus photon energy. Several resonant peaks arise in
the shot noise as the photon energy �ω is small, and
the shot noise increases to the height 10−4 S0 at about
�ω = 0.3× 10−3 γ0. The saturated value 1.2× 10−4 S0 of
shot noise reaches as �ω � 10−3 γ0. Compared with the
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shot noise for the balanced case shown in Figure 5, we see
that the shot noise of the unbalanced case is larger than
that of the balanced one. This is because that for the un-
balanced absorption, the thermal term becomes nonequi-
librium noise, while the one in the balanced case is still an
equilibrium noise even in the presence of MWF. The Fano
factor also resonates drastically as the photon energy is
small, and it reaches the saturated value about F = 0.2.
The behavior of the Fano factor tells us that the shot noise
and current behave quite differently as the photon energy
is small.

The Fano factor versus source-drain bias eV is pre-
sented in Figure 9 to show the behavior related to the
enhancement and suppression of shot noise. One observes
that as the source-drain bias is small enough, the Fano
factor becomes greater than one, F > 1. As the bias eV
increases to a definite value, the Fano factor is lesser than
one, F < 1. This situation implies that the shot noise
is not always sub-Poissonian, it may be super-Poissonian
by changing the source-drain bias. Since as eV = 0, the
tunneling current is zero due to the symmetric photon-
electron pumping. However, the shot noise is induced by
the photon-electron pumping. From the formula of shot
noise equation (15), one recognizes that the contribution
of shot noise comes from both of the photon perturbed
thermal noise and transporting noise as eV → 0, and
T → 0. Compared with the Fano factors between the
balanced and unbalanced absorptions, we obtain that the
shot noises of the two cases belong to different types. The
shot noise for the unbalanced absorption possesses larger
saturated Fano factor than that of the balanced situation,
which also indicates the enhancement of shot noise due to
the unbalanced absorption of photons.

4 Summary and discussion

We have investigated the spectral density of shot noise for
the system of CN-QD-CN irradiated with a MWF on the
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Fig. 9. The Fano factor versus source-drain bias eV for the un-
balanced case. The parameters are chosen as Rγ = 17.5 meV,
eVg = 0, �ω = 2.0 meV, and Λ = 0.8.

QD. The noise is derived from the equation of motion
method incorporated with the nonequilibrium Green’s
function of QD. The terminal features are involved in
the shot noise through modifying the self-energy of QD.
The DOS of CN leads contribute to the noise both on
the energy-splitting and the line-width of resonances. The
MWF provides side-bands for electron to tunnel, and the
irradiation of MWF induces compound effect of photon
absorption and emission. This arises the balanced absorp-
tion and unbalanced absorption procedures related to the
shot noise, and they behave quite differently in our system.
The contributions of CN leads to the shot noise exhibit ob-
vious behaviors when the biased voltage and energies are
closed to the energy level of QD.

For the balanced absorption, the shot noise spectral
density and the differential shot noise appear symmetric
resonant structures. The external MWF contributes the
effect of adding photon resonant side peaks to form shoul-
ders of shot noise and differential shot noise. The novel
side peaks are associated with the PAT procedure of ab-
sorption and emission of photons accompanying the sup-
pression of shot noise. The Fano factor of balanced system
is always smaller than one, which indicates that the shot
noise in this case belongs to sub-Poissonian. The shot noise
of the unbalanced situation is nonzero as the source-drain
bias is removed, even if the corresponding current is zero
for the symmetric circumstance. The shot noise exhibits
asymmetric behavior, which implies that the unbalanced
absorption of photons and biased voltage together destroy
the symmetry of shot noise and differential shot noise. The
shot noise of the unbalanced case is larger than that of
the balanced one. The Fano factor resonates drastically
as the photon energy is small, which tells us that the shot
noise and current behave quite differently. The shot noise
is not always sub-Poissonian, it may be super-Poissonian
by changing the source-drain bias for the unbalanced ab-
sorption.
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Phys. Rev. B 46, 12485 (1992); Ya.M. Blanter, M.
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